This paper presents a techno-economic assessment of the wind power potential for eight locations distributed over the Northern part of Cyprus. The wind speed data were collected from the meteorological department located in Lefkoşa, Northern Cyprus.Ten distribution models were used to analyze the wind speed characteristics and wind energy potential at the selected locations. The maximum-likelihood method was used for calculating the parameters of the distribution functions.The power law model is utilized to determine the mean wind speed at various heights. In addition, the wind power density for each location was estimated. Furthermore, the performances of different small-scale vertical axis 3–10 kW wind turbines were evaluated to find those that were suitable and efficient for power generation in the studied locations.The results showed that the annual mean wind speed in the regions is greater than 2 m/s at a height of 10 m. Moreover, it is indicated that Generalized Extreme Value distribution provided the best fit to the actual data for the regions of Lefkoşa, Ercan, Girne, Güzelyurt, and Dipkarpaz. However, the Log-Logistic, Weibull, and Gamma distributions gave a better fit to the actual data of Gazimağusa, YeniBoğaziçi, and Salamis, respectively. The Rayleigh distribution does not fit the actual data from all regions. Furthermore, the values of wind power densityat the areas studied ranged from 38.76 W/m2 to 134.29 W/m2 at a height of 50 m, which indicated that wind energy sources in these selected locations are classified as poor. Meanwhile, based on the wind analysis, small-scale wind turbine use can be suitable for generating electricity in the studied locations. Consequently, an Aeolos-V2 with a rating of 5 kW was found to be capable of producing the annual energy needs of an average household in Northern Cyprus.