In recent years, bridge health monitoring system has been widely used to deal with massive data produced with the continuous growth of monitoring time. However, how to effectively use these data to comprehensively analyze the state of a bridge and provide early warning of bridge structure changes is an important topic in bridge engineering research. This paper utilizes two algorithms to deal with the massive data, namely Kohonen neural network and long short-term memory (LSTM) neural network. The main contribution of this study is using the two algorithms for health state evaluation of bridges. The Kohonen clustering method is shown to be effective for getting classification pattern in normal operating condition and is straightforward for outliers detection. In addition, the LSTM prediction method has an excellent prediction capability which can be used to predict the future deflection values with good accuracy and mean square error. The predicted deflections agree with the true deflections, which indicate that the LSTM method can be utilized to obtain the deflection value of structure. What's more, we can observe the changing trend of bridge structure by comparing the predicted value with its limit value under normal operation.