The microcirculation of mammals is an autoregulated and complex synchronised system according to the current demand for nutrients and oxygen. The undisturbed course of vital functions such as of growth, blood pressure regulation, inflammatory sequence and embryogenesis is bound to endothelial integrity. The sensible vasomotion is particularly dependent on it. Mechanotransduction signalling networks play a critical role in vital cellular processes and are the decisive physiological mechanism for an adequate NO-release, main responsible for the autoregulation of vessels. Disturbed endothelial integrity, originating, e.g., from chronic oxidative stress and/or mechanic (oscillatory) stress, leads to disturbance of vasomotion as well as a disequilibrium of redox systems, recognized as main cause for the development of chronic inflammation diseases such as atherosclerosis and corresponding secondary illnesses, possibly cancer. The endothelial cytoskeleton, which corresponds to a viscoelastic "tensegrity model", offers the possibility for mechano-transduction via its special construction. The rapidly growing knowledge about mechanical forces in cellular sensing and regulation of the last years (that culminated in the Nobel Prize award for the decoding of pressure/vibration sensing ion channels), led us to the following hypothesis: The extern stressor "Noise" produces under certain conditions an oscillatory stress field in the physiologically laminar flow bed of capillaries, which is able to lead to irregular mechano-transductions. Findings provide a strict dependence on frequency in mechano-transduction with determination of thresholds for a 1:1 transmission. The knowledge, recently gained on endothelial mechano-transduction, sheds a new light on the importance of low frequencies. This could indicate the long-sought pathophysiological way in which infrasound can exert a stressor effect at the cellular level. Noise-exposed citizens, who live near infra-How to cite this paper: Bellut-Staeck, U.M. (2023) Impairment of the Endothelium and Disorder of Microcirculation in Humans and Animals Exposed to Infrasound due to Irregular Mechano-Transduction.