We study the short-time distribution P(H,L,t) of the two-point two-time height difference H=h(L,t)-h(0,0) of a stationary Kardar-Parisi-Zhang interface in 1+1 dimension. Employing the optimal-fluctuation method, we develop an effective Landau theory for the second-order dynamical phase transition found previously for L=0 at a critical value H=H_{c}. We show that |H| and L play the roles of inverse temperature and external magnetic field, respectively. In particular, we find a first-order dynamical phase transition when L changes sign, at supercritical H. We also determine analytically P(H,L,t) in several limits away from the second-order transition. Typical fluctuations of H are Gaussian, but the distribution tails are highly asymmetric. The tails -lnP∼|H|^{3/2}/sqrt[t] and -lnP∼|H|^{5/2}/sqrt[t], previously found for L=0, are enhanced for L≠0. At very large |L| the whole height-difference distribution P(H,L,t) is time-independent and Gaussian in H, -lnP∼|H|^{2}/|L|, describing the probability of creating a ramplike height profile at t=0.