Complex dynamic contents of visual stimuli induce implicit reactions in a user. This leads to changes in physiological processes of the user which is referred to as stress. Our goal is to model and produce a system that represents the mechanical interactions of the body and eye movement behavior. We are particularly concerned with the skin conductance response (SCR) and eye fixations to visual stimulus and build a dynamic system that detects stress and its correlates to visual widgets. The process consists of the following modules: (1) a hypothesis generator for suggesting possible structural changes that result from the direct interaction with visual stimulus, (2) an information source for responding to operator querying about users' interactive and physiological processes, and (3) a continuous system simulator for simulating and illustrating physiological reactions during interaction. This model serves as an infrastructure for modeling physiological processes and could be of benefit in usability laboratory, web developers, and designers of interactive systems, enabling evaluators to visualize interface as a better access to identifying areas that cause stress to users.