Efficient provision of Video-on-Demand (VoD) services requires that popular videos are stored in a cache close to users. Video popularity (defined by requested count) prediction is, therefore, important for optimal choice of videos to be cached. The popularity of a video depends on many factors and, as a result, changes dynamically with time. Accurate video popularity estimation that can promptly respond to the variations in video popularity then becomes crucial. In this paper, we analyze a method, called Minimal Inverted Pyramid Distance (MIPD), to estimate a video popularity measure called the Inverted Pyramid Distance (IPD). MIPD requires choice of a parameter, k, representing the number of past requests from each video used to calculate its IPD. We derive, analytically, expressions to determine an optimal value for k, given the requirement on ranking a certain number of videos with specified confidence. In order to assess the prediction efficiency of MIPD, we have compared it by simulations against four other prediction methods: Least Recency Used (LRU), Least Frequency Used (LFU), Least Recently/Frequently Used (LRFU), and Exponential Weighted Moving Average (EWMA). Lacking real data, we have, based on an extensive literature review of real-life VoD system, designed a model of VoD system to provide a realistic simulation of videos with different patterns of popularity variation, using the Zipf (heavy-tailed) distribution of popularity and a non-homogeneous Poisson process for requests. From a large number of simulations, we conclude that the performance of MIPD is, in general, superior to all of the other four methods. INDEX TERMS Popularity prediction, video-on-demand, pre-placement, request statistic, Zipf distribution, non-homogeneous Poisson process. BILL MORAN (Life Member, IEEE) received the B.Sc. degree (Hons.