Mercury (Hg) is a natural trace element found in high concentrations in top predators, including Arctic seabirds. Most current knowledge about Hg concentrations in Arctic seabirds relates to exposure during the summer breeding period when researchers can easily access seabirds at colonies. However, the few studies focused on winter have shown higher Hg concentrations during the non-breeding period than breeding period in several tissues. Hence, improving knowledge about Hg exposure during the non-breeding period is crucial to understanding the threats and risks encountered by these species year-round. We used feathers of nine migratory alcid species occurring at high latitudes to study bird Hg exposure during both the breeding and non-breeding periods. Overall, Hg concentrations during the nonbreeding period were ~3 times higher than during the breeding period. In addition, spatial differences were apparent within and between the Atlantic and Pacific regions. While Hg concentrations during the non-breeding period were ~9 times and ~3 times higher than during the breeding period for the West and East Atlantic respectively, Hg concentrations in the Pacific during the non-breeding period were only ~1.7 times higher than during the breeding period. In addition, individual Hg concentrations during the non-breeding period for most of the seabird colonies were above 5.00 µg g-1 dry weight (dw), which is considered to be the threshold at which deleterious effects are observed, suggesting that some breeding populations might be vulnerable to non-breeding Hg exposure. Since wintering area locations, and migration routes may influence seasonal Hg concentrations, it is crucial to improve our knowledge about spatial ecotoxicology to fully understand the risks associated with Hg contamination in Arctic seabirds.