2015
DOI: 10.1016/j.procir.2015.06.065
|View full text |Cite
|
Sign up to set email alerts
|

Wire EDM Monitoring for Zero-defect Manufacturing based on Advanced Sensor Signal Processing

Abstract: Wire Electrical Discharge Machining (WEDM) processes are investigated in the perspective of zero-defect manufacturing with the aim to detect the process conditions leading to common defects generated during WEDM, i.e. the occurrence of lines and marks on the resulting surface. The study is performed through the employment of a multiple sensor monitoring system able to acquire voltage and current data in the gap between the workpiece and the wire electrode with a very high sampling rate. An advanced sensor sign… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
7
0
2

Year Published

2018
2018
2022
2022

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 35 publications
(9 citation statements)
references
References 15 publications
0
7
0
2
Order By: Relevance
“…Dena den, gero eta ohikoagoa da, horretarako, esperimentuen diseinua erabiltzea [8][9][10][11]. Bigarrenari dagokionez, deskargen karakterizazioa eta pieza-altueraren detekzioa dira landutako gaietako batzuk [12][13].…”
Section: Artearen Egoeraunclassified
See 1 more Smart Citation
“…Dena den, gero eta ohikoagoa da, horretarako, esperimentuen diseinua erabiltzea [8][9][10][11]. Bigarrenari dagokionez, deskargen karakterizazioa eta pieza-altueraren detekzioa dira landutako gaietako batzuk [12][13].…”
Section: Artearen Egoeraunclassified
“…Bigarren kasu horretan sortzen dira arazo gehien, haria apurtzeko arriskua baitago. Hain zuzen ere, kasu horietan aplikatu dira arazo hori konpontzen saiatzeko sare neuronalak erabiltzen dituzten lanak [11] edo denbora errealean kontrolatzeko edo monitorizatzeko teknikak [12][13], parametroak une oro ebakitzen den altuerara egokitzeko. Hala eta guztiz ere, kontrol eta egokitzapen horiek behar bezala egiteko sistema bat lortzeko, oinarrizkoa daaldagaien azterketa.…”
Section: Artearen Egoeraunclassified
“…To find out the correlation between processing parameters and inappropriate processing conditions, the model was established with eight highly correlated parameters and monitored with a sampling interval of 32 milliseconds. Caggianoa et al [7] used a sensor to collect voltage and current signals at a high sampling rate to find ten most relevant features of electrical discharge machining. However, due to the long processing time and the huge amount of data, Gan et al [8] proposed to use data mining algorithms to solve the feature dimension problem.…”
Section: Introductionmentioning
confidence: 99%
“…The results revealed that the average deviation between network predictions and actual components is below 6µm, which falls within the current limits of process accuracy. The search and recognition of behavioral patterns of voltage and current signals in the WEDM process has been studied by Caggiano et al [ 31 , 32 ], who presented a SNN that effectively correlates voltage and current signals with the defects and marks originated on the machined component during the WEDM process. In all cases, the success of the network exceeded 81%.…”
Section: Introductionmentioning
confidence: 99%