2019
DOI: 10.1109/tmtt.2018.2884412
|View full text |Cite
|
Sign up to set email alerts
|

Wireless-Coupled Oscillator Systems With an Injection-Locking Signal

Abstract: A detailed analysis of wireless-coupled oscillator systems under the effect of an injection-locking signal is presented. The injection source of high spectral purity is introduced at a single node and enables a reduction of the phase-noise spectral density. Under this injection source, the behavior of the coupled system is qualitatively different from the one obtained in freerunning conditions. Two cases are considered: bilateral synchronization, in which an independent source is connected to a particular syst… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
5

Relationship

3
2

Authors

Journals

citations
Cited by 7 publications
(10 citation statements)
references
References 48 publications
(112 reference statements)
0
10
0
Order By: Relevance
“…As in the single-frequency VCO of [15], two transistor devices are connected to two of the resonator ports. Our goal has been to obtain a demonstrator independent resonance modes at the incommensurate frequencies f1 = 2.4 GHz and f2 = 4.1 GHz; these values enable a comparison of the phase-noise spectral density with previous singlefrequency realizations [32]- [33] using similar components. The resonator design departs from the structure sketched in Fig.…”
Section: A Circuit Topologymentioning
confidence: 99%
“…As in the single-frequency VCO of [15], two transistor devices are connected to two of the resonator ports. Our goal has been to obtain a demonstrator independent resonance modes at the incommensurate frequencies f1 = 2.4 GHz and f2 = 4.1 GHz; these values enable a comparison of the phase-noise spectral density with previous singlefrequency realizations [32]- [33] using similar components. The resonator design departs from the structure sketched in Fig.…”
Section: A Circuit Topologymentioning
confidence: 99%
“…This section presents a semi-analytical formulation of this interaction, compatible with the use of commercial HB. In this formulation [24], [25], [36], the oscillator is represented with a realistic numerical model, extracted from HB and introduced into an analytical description of the complete system. This has two advantages: it avoids the convergence problems often encountered in HB and provides insight into the dependence of the oscillator solution on the external elements and parameters.…”
Section: Semi-analytical Formulations For Oscillator-based Systemsmentioning
confidence: 99%
“…However, this operation mode often gives rise to multi-valued solutions, virtually impossible to simulate in commercial HB. To cope with this problem, semi-analytical formulations have been introduced [24], [25], [36], which make use of a realistic numerical model of the standalone oscillator, extracted from HB, that is combined with an analytical description of the selfinjection loop. Here a new procedure to determine the stability properties considering the time delay of the signal envelope is presented for the first time.…”
Section: Introductionmentioning
confidence: 99%
“…C OUPLED oscillator systems can be used in several applications like power combination, beam-steering in phased-arrays [1]- [7] or in sensor applications [8]- [10], where the synchronization between the oscillators provides a common time-scale between the nodes of the sensor network. In previous works [11], [12] a semi-analytical formulation (SAF) has been proposed to analyze the behavior of coupled oscillator systems.…”
Section: Introductionmentioning
confidence: 99%
“…The resulting SAF can be used to model the steady state behavior of the VCO for tuning voltage values in the neighborhood of η 0 . The SAF has been proven to be a powerful technique to model the VCO behavior when operating under free-running conditions [14], synchronized to an external source [12], [14]- [16] or as a part of an array of coupled oscillators, operating both in phased array antenna systems [11]- [13] and in wireless sensor networks [8]- [10]. In the case of coupled oscillators, the SAF is able to predict the coexisting solutions of the array, together with their bifurcation loci.…”
Section: Introductionmentioning
confidence: 99%