The energy of sensor nodes plays a vital role in wireless sensor networks for different purposes such as sensing events, communicating among sensor nodes, and transmitting information from one node to another node. The average energy of the network is referred to as the ratio of the total energy of all sensor nodes in the network to the number of nodes. In this paper, multitier architecture is proposed for calculating the average energy and throughput of the network in terms of the number of packets reached at the base station (BS). The proposed approach has been compared with two existing approaches, the low energy adaptive clustering hierarchy and stable election protocol, in terms of average energy and throughput of the network. This paper presents the average energy of each node in the network in both 2D and 3D views for better interpretation of results. The proposed approach is 19.79% better in terms of average energy compared with the stable election protocol. The proposed approach is further compared with the low energy adaptive clustering hierarchy protocol and is found to be 34.20% better.