With the increasing demand for data exchange between nearby devices in proximity-based services, enhancing the security of wireless mutual broadcast (WMB) networks is crucial. However, WMB networks are inherently vulnerable to eavesdropping due to the open broadcast nature of their communication. This paper investigates the improvement of secrecy performance in random-access-based WMB (RA-WMB) networks by integrating physical layer security (PLS) techniques with hybrid duplex (HBD) operations under a stochastic geometry framework. The HBD method balances half-duplex (HD) receiving and full-duplex (FD) transceiving, utilizing self-interference cancellation (SIC) to enhance PLS performance. Key operational parameters, including transmission probability (TxPr), friendly jammer density, and conditions for FD operation, are designed to maximize secrecy performance. The analytical and numerical results demonstrate significant improvements in PLS performance, with SIC playing a critical role, particularly in scenarios with dense legitimate nodes, and with TxPr adjusted to balance HD receiving and FD transceiving based on SIC imperfections. The proposed design principles provide a comprehensive framework for enhancing the security of WMB networks, addressing the complex interplay of interference and SIC in various network configurations.