Every All-Terrain vehicle right now uses independent suspension system which consists of double wishbones connected to all the tires. As All-Terrain vehicles generally operated on different road conditions it is an absolute necessity to have a robust design of wish bones. A good deformation rate and good FOS determines how good a design. In this study we have designed three types of upper wishbones in Solid Works whose suspension geometry based on wheel base, track width, roll center and pith center of the vehicle is validated in LOTUS software and the following graphs of camber, castor, toe, kingpin inclination are obtained. Linear static structural analysis is performed on all the three types designed in Ansys software and total deformation rate, equivalent stresses generated and FOS is calculated and the based on the results the best design is used for the vehicle. The design provided greater suspension travel, reducing the un-sprung mass of the vehicle, maximizing the performance of the suspension system of the vehicle and better handling of vehicle while cornering. The design is used in SAE BAJA 2020 competition Conducted in Chitkara University Punjab.