A deep learning network is introduced to predict concentrations of gases in the underground coal mine enclosed region using various IoT-enabled gas sensors installed in a metallic gas chamber. The air is sucked automatically at specific intervals from the sealed-off site utilizing a solenoid valve, suction pump, and programmed microprocessor. The gas sensors monitor the gas content in the underground coal mine and communicate gas concentration to the surface server room through a wireless network and cloud storage media. The t-SNE_VAE_bi-LSTM model is proposed in this study as a prediction model that combines the t-SNE, VAE, and bi-LSTM networks. The proposed model's t-SNE method aims to minimize the dimensionality of the recorded gas concentration; the presented model's VAE layer intends to retrieve the inner characteristics of low-dimension gas concentration. Finally, the given model's Bi-LSTM layer tries to forecast the concentrations of CH4, CO2, CO, O2, and H2 gases. The proposed model's prediction accuracy is compared with the existing two models, namely auto-regressive integrated average moving (ARIMA) and chaos time series (CHAOS). The experiment findings demonstrate that the t-SNE_VAE_bi-LSTM model forecasted mean square error (MSE) is more accurate, and it has lesser MSE value of 0.029 and 0.069 for CH4; 0.037 and 0.019 for CO2; 0.092 and 0.92 for CO; 1.881 and 1.892 for O2; and 1.235 and 1.200 for H2 than the ARIMA and CHAOS models, respectively.