“…Since then, geometric morphometrics has been continually refined and has found countless applications in biological, anthropological, paleontological, medical, psychological, archeological, and industrial fields (for reviews see, e.g., Adams & Otárola‐Castillo, 2013; Bookstein, 2018; Cardini, 2020; Elewa, 2010; Halazonetis, 2004; Klingenberg, 2010; Lawing & Polly, 2010; MacLeod, 2018; Mitteroecker, 2020; Mitteroecker & Gunz, 2009; Schaefer et al, 2009; Slice, 2005; Wiley et al, 2005; Zelditch et al, 2012). The geometric morphometric toolkit has also been connected to other methodologies, including biomechanics (e.g., O'Higgins et al, 2019; Parr et al, 2012; Polly et al, 2016; Weber et al, 2011), systematics and phylogenetics (e.g., Adams, 2014; Klingenberg & Gidaszewski, 2010; Monteiro, 2013; Rohlf, 2002), image analysis (e.g., Mayer et al, 2014, 2017), quantitative genetics (e.g., Adams, 2011; Baab, 2018; Klingenberg & Leamy, 2001; Martínez‐Abadías et al, 2009; Pavličev et al, 2016; Schroeder & von Cramon‐Taubadel, 2017), genetic mapping (e.g., Klingenberg et al, 2001; Mitteroecker et al, 2016; Pallares et al, 2015; Varón‐González et al, 2019), evolutionary psychology and brain imaging (e.g., Walla et al, 2020; Windhager et al, 2012, 2018) as well as molecular and developmental biology (e.g., Arif et al, 2013; Buchberger et al, 2021; Hallgrimsson et al, 2015; Marchini et al, 2021; Martínez‐Abadías et al, 2018). Recent implementations of geometric morphometric methods into R and Mathematica facilitated analyses (Adams & Otárola‐Castillo, 2013; Dryden, 2021; Dryden & Mardia, 2016; Polly, 2017; Schlager, 2017).…”