Acetylcholinesterase (AChE; EC 3.1.1.7) is known to hydrolyze acetylcholine at cholinergic synapses. In mammalian erythrocyte, AChE exists as a dimer (G ) and is proposed to play role in erythropoiesis. To reveal the regulation of AChE during differentiation of erythroblast, erythroblast-like cells (TF-1) were induced to differentiate by application of erythropoietin (EPO). The expression of AChE was increased in parallel to the stages of differentiation. Application of EPO in cultured TF-1 cells induced transcriptional activity of ACHE gene, as well as its protein product. This EPO-induced event was in parallel with erythrocytic proteins, for example, α- and β-globins. The EPO-induced AChE expression was mediated by phosphorylations of Akt and GATA-1; because the application of Akt kinase inhibitor blocked the gene activation. Erythroid transcription factor also known as GATA-1, a downstream transcription factor of EPO signaling, was proposed here to account for regulation of AChE in TF-1 cell. A binding sequence of GATA-1 was identified in ACHE gene promoter, which was further confirmed by chromatin immunoprecipitation (ChIP) assay. Over-expression of GATA-1 in TF-1 cultures induced AChE expression, as well as activity of ACHE promoter tagged with luciferase gene (pAChE-Luc). The deletion of GATA-1 sequence on the ACHE promoter, pAChE -Luc, reduced the promoter activity during erythroblastic differentiation. On the contrary, the knock-down of AChE in TF-1 cultures could lead to a reduction in EPO-induced expression of erythrocytic proteins. These findings indicated specific regulation of AChE during maturation of erythroblast, which provided an insight into elucidating possible mechanisms in regulating erythropoiesis.