Recent advances in the synthesis, characterisation and applications of elongated titanate and TiO2 nanostructures (including nanotubes, nanofibres and nanorods) are reviewed. The physicochemical properties of nanostructures, such as high surface area, efficient ion‐exchange properties, electron and proton conductivity and high aspect ratio, are described in connection with a particular application. Practical aspects of the preparation, stability and transformation of elongated titanates are considered. A critical survey of the literature is provided together with the development of prospectiveenergy applications of elongated titanates in catalysis, photocatalysis, electrocatalysis, solar cells, fuel cells, lithium batteries and hydrogen storage. Other applications utilising the high aspect ratio of elongated nanostructures include biomedical implants, sensors, drug delivery systems and smart, tribological composite coatings. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)