Accelerating the learning curve in the development of the Vaca Muerta utilizing lessons learned in North American unconventional resource plays is the focus of this paper. Reducing completion costs while maintaining high productivity has become a key objective in the current low-price environment. Completion diagnostics have been demonstrated to optimize stimulation and completion parameters that have shaped successful field developments.
The paper reviews stimulation diagnostic data from wells completed in the Tuscaloosa Marine Shale, Eagle Ford, Wolfcamp and Niobrara shale formations. Case histories are presented in which proppant and fluid tracers were successfully employed in completion optimization processes. In the examples presented, diagnostic results were used to assess the stimulation of high productivity intervals within a target zone, evaluate various completion methods, and optimize stage and cluster spacing. The diagnostic data were compared with post-frac production rates in an effort to correlate completion changes with well performance. Results presented compare first, engineered perforations versus conventional geometrically spaced perforations to drive up effectiveness in cluster stimulation. Second, new chemistries, such as nanosurfactant, versus conventional chemistries to cut either completion cost or prove their profitability. Third, employing an effective choke management strategy to improve well productivity. Last, as in any stacked pay, determining fracture height growth in order to optimize well density, well spacing, field development and ultimately the recovery of the natural resources.
Completion effectiveness is shown to be improved by landing laterals in high productivity target intervals, increasing proppant coverage across the lateral by utilizing the most effective completion methods, optimizing cluster spacing and decreasing the number of stages to reduce completion costs while achieving comparable production rates. Cluster treatment efficiency (CTE), in particular, has become a critical metric when optimizing hydraulic fracturing treatment designs based on current and future well densities. It can be used to rationalize well performance as well as to identify possible candidates for a refrac program.
Using completion diagnostics, successful completion techniques were identified that led to production enhancements and cost reductions in prolific plays such as the Tuscaloosa Marine Shale, Eagle Ford, Wolfcamp and Niobrara.