The use of the commercial simulator Aspen Plus® could bring an amelioration in the accuracy of the predictions of the chemical species composition in the output streams of the anaerobic digestion process, due to availability of a broad library of thermodynamic and phenomena transport properties in this commercial package. In the present investigation, the process simulation model for anaerobic digestion, which was originally developed by Rajendran et al. [1], has been modified by including a stoichiometric-equilibria reactor to calculate the extent of the ionization of the molecules present in the anaerobic digestate. The refined model offers a more accurate prediction of the composition of the biogas because it delves on the chemical equilibrium of the gaseous stream and the anaerobic digestate. Additionally, the refined model allows to assess the possibility of upgrading the gaseous stream to biomethane degree via manufacturing of ammonium bicarbonate. This processing pathway relies on the stabilization of the anaerobic digestate by means of biomass ash-based treatment. First of all, the titration of the manure digestate with the hydrochloric acid showed that a dose of 3.18 mEq/g would be required to attain the targeted pH of zero-point charge, upon addition of the sewage sludge ash in a ratio to the manure digestate of 0.6 ± 0.2 %. Secondly, the profiles of ammonia, carbon dioxide, and methane found in the biogas agree with both the pH of the treated digestate and the processes described in for the simultaneously upgrading the biogas and the production of ammonium bicarbonate. The refined Aspen Plus® model presented in this article needs to be further developed to ensure the standards are attained in all output streams of stabilized anaerobic digestate, biomethane, and isolated added-value chemical fertilizers.