Phosphorus (P) is one of the most limiting macronutrients for crop productivity and P deficiency is a common phenomenon in agricultural soils worldwide. Despite long-term application of phosphate fertilizers to increase crop yields, P availability is often low, due to the high affinity of phosphate for the soil solid phase. It has been suggested that the accumulated (surplus) P in agricultural soils is sufficient to sustain crop yields worldwide for about 100years. In this paper, we try to clear up the potential for making use of legacy P in soils for crop growth potentially alleviating the global P resource shortage. Specifically, we try to clear up the potential of soil "P activators" for releasing fixed P. P activators accelerate and strengthen process which transform P into bio-available forms via a range of chemical reactions and biological interactions. They include phosphate solubilizing microorganisms, phosphatase enzymes and enzyme activators, low molecular weight organic acids, humic acids, lignin, crop residues, biochar and zeolites. Although reported performance is variable, there is growing evidence that P activators can promote the release of phosphate from soil and, hence, have potential for mitigating the impending global P crisis. Further basic and applied research is required to better understand the mechanisms of interaction of P activators with natural soils and to maximize activator efficacy.