Grasslands and savannas are experiencing transformation and degradation due to bush encroachment (BE). BE has been monitored using restrictive traditional techniques that include field surveys and manual long-term observations. Owing to the limitations of traditional techniques, remote sensing (RS) is an attractive alternative to assess BE because of its generally high precision and return interval, cost-effectiveness, and availability of historical data archives. Furthermore, RS has an added advantage in its ability of acquiring global coherent data in near-real time compared to the snapshot acquisition mode with traditional surveying techniques. Despite its extensive application and vast possibilities, a critical synthesis for RS successes, shortcomings, and best practices in mapping BE in savannas and grasslands is lacking. Thus, broadly, the direction, which this type of investigation has taken over the years is largely unknown. This study sought to connect and measure the progress RS has made in mapping BE in grassland and savanna ecosystems through bibliometric analysis. One hundred and twenty-three peer-reviewed English written documents from the Web of Science and Scopus databases were evaluated. The study revealed 13.05% average annual publication growth, indicating that RS and BE mapping research in grasslands and savannas has been increasing over the survey period. Most published studies came from the USA, while the rest came from South Africa, China, and Australia. The results indicate that BE has been extensively mapped in grasslands and savannas using coarse to medium resolution data. As a result, there is a weak relationship (r² = 0.324) between the dependent variable (aerial images) and the independent variable (percentage of woody cover). This connotes the need to improve BE assessments in grasslands and savannas by integrating recent high-resolution data, machine learning algorithms and artificial intelligence.