Learners often need to extract recurring items from continuous sequences, in both vision and audition. The best-known example is probably found in word-learning, where listeners have to determine where words start and end in fluent speech. This could be achieved through universal and experience-independent statistical mechanisms, for example by relying on Transitional Probabilities (TPs). Further, these mechanisms might allow learners to store items in memory. However, previous investigations have yielded conflicting evidence as to whether a sensitivity to TPs is diagnostic of the memorization of recurring items. Here, we address this issue in the visual modality. Participants were familiarized with a continuous sequence of visual items (i.e., arbitrary or everyday symbols), and then had to choose between (i) high-TP items that appeared in the sequence, (ii) high-TP items that did not appear in the sequence, and (iii) low-TP items that appeared in the sequence. Items matched in TPs but differing in (chunk) frequency were much harder to discriminate than items differing in TPs (with no significant sensitivity to chunk frequency), and learners preferred unattested high-TP items over attested low-TP items. Contrary to previous claims, these results cannot be explained on the basis of the similarity of the test items. Learners thus weigh within-item TPs higher than the frequency of the chunks, even when the TP differences are relatively subtle. We argue that these results are problematic for distributional clustering mechanisms that analyze continuous sequences, and provide supporting computational results. We suggest that the role of TPs might not be to memorize items per se, but rather to prepare learners to memorize recurring items once they are presented in subsequent learning situations with richer cues.