We study the time-dependence of Hawking radiation for a black hole in the Unruh vacuum, and find that it is not robust against certain UV and IR effects. If there is a UV cutoff at the Planck scale, Hawking radiation is turned off after the scrambling time. In the absence of a UV cutoff, Hawking radiation is sensitive to the IR cutoff through a UV/IR connection due to higher-derivative interactions in the effective theory. Furthermore, higher-derivative interactions with the background contribute to a large amplitude of particle creation that changes Hawking radiation. This unexpected large effect is related to a peculiar feature of the Hawking particle wave packets.