We construct scalarized wormholes with a NUT charge in higher curvature theories. We consider both Einstein-scalar-Gauss-Bonnet and Einstein-scalar-Chern-Simons theories, following Brihaye, Herdeiro and Radu, who recently studied spontaneously scalarised Schwarzschild-NUT solutions. By varying the coupling parameter and the scalar charge we determine the domain of existence of the scalarized nutty wormholes, and their dependence on the NUT charge. In the Gauss-Bonnet case the known set of scalarized wormholes is reached in the limit of vanishing NUT charge. In the Chern-Simons case, however, the limit is peculiar, since with vanishing NUT charge the coupling constant diverges. We focus on scalarized nutty wormholes with a single throat and study their properties. All these scalarized nutty wormholes feature a critical polar angle, beyond which closed timelike curves are present.