The paper presents the novel use of analytical models of a beam on an elastic foundation. The one-parameter model (Winkler model) and the two-parameter models (Filonenko-Borodich and Pasternak models) were investigated. These models were used to describe the elastic response of axially loaded blind rivets used with sandwich structures. The elastic response related to the elastic strain energy is mentioned in the paper as the resilience modulus of the connection. The databases from laboratory pull-out tests were used to verify these models. One type of blind rivet (aluminum, with three clamping arms) and one type of sandwich beam were used. The sandwich beams used in the experiments consisted of two thin-walled and stiff external facings (zinc-coated steel) and a thick, soft core (polyisocyanurate foam—PIR). In the test the sandwich beams were subjected to static, axial pull-out loading. The research provides the quantitative comparison between the laboratory experiment and the analytical solutions from models adopted for this type of connection. Additionally, the failure mechanisms, the secant stiffness at the ultimate capacity, and the strain energy capacity of the elastic foundation at failure are considered. To the author’s knowledge, this approach has not been described in the literature so far.