In this study, a CUDA Fortran-based GPU-accelerated Laplace equation model was developed and applied to several cases. The Laplace equation is one of the equations that can physically analyze the groundwater flows, and is an equation that can provide analytical solutions. Such a numerical model requires a large amount of data to physically regenerate the flow with high accuracy, and requires computational time. These numerical models require a large amount of data to physically reproduce the flow with high accuracy and require computational time. As a way to shorten the computation time by applying CUDA technology, large-scale parallel computations were performed on the GPU, and a program was written to reduce the number of data transfers between the CPU and GPU. A GPU consists of many ALUs specialized in graphic processing, and can perform more concurrent computations than a CPU using multiple ALUs. The computation results of the GPU-accelerated model were compared with the analytical solution of the Laplace equation to verify the accuracy. The computation results of the GPU-accelerated Laplace equation model were in good agreement with the analytical solution. As the number of grids increased, the computational time of the GPU-accelerated model gradually reduced compared to the computational time of the CPU-based Laplace equation model. As a result, the computational time of the GPU-accelerated Laplace equation model was reduced by up to about 50 times.