The domain of wireless sensor networks is considered to be among the most significant scientific regions thanks to the numerous benefits that their usage provides. The optimization of the performance of wireless sensor networks in terms of area coverage is a critical issue for the successful operation of every wireless sensor network. This article pursues the maximization of area coverage and area k-coverage by using computational intelligence algorithms, i.e., a genetic algorithm and a particle swarm optimization algorithm. Their performance was evaluated via comparative simulation tests, made not only against each other but also against two other well-known algorithms. This appraisal was made using statistical testing. The test results, that proved the efficacy of the algorithms proposed, were analyzed and concluding remarks were drawn.