Abstract:We propose a novel unsupervised learning approach for computing correspondences between non-rigid 3D shapes. The core idea is that we integrate a novel structural constraint into the deep functional map pipeline, a recently dominant learning framework for shape correspondence, via a powerful spectral manifold wavelet transform (SMWT). As SMWT is isometrically invariant operator and can analyze features from multiple frequency bands, we use the multiscale SMWT results of the learned features as function preserv… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.