Background: In this study, we investigated the relationship between long-chain non-coding RNAs (lncRNAs) and respiratory syncytial virus (RSV)- exacerbated asthma.
Methods: Transcriptome microarray was used to detect differentially expressed lncRNAs in dendritic cells (DCs) co-cultured with RSV-infected human airway epithelial cells and DCs infected with RSV. The identified downregulation of lncRNA n337374 was validated using fluorescence RT-qPCR. LncRNA n337374-overexpressing DCs and RSV-exacerbated asthmatic mouse models were established. Airway hyperreactivity and bronchoalveolar lavage fluid (BALF) were examined, and pathological changes in lung tissues were observed in mice. Surface molecules in DCs were detected by flow cytometry and RT-qPCR and the expression of CD86 and mitogen-activated protein kinases was determined by western blot.
Results: In an RSV-exacerbated asthmatic mouse model, the airway wall was thickened, luminal stenosis was observed, a large number of inflammatory cells were infiltrated in the lung tissue, lung function was impaired, and counts of inflammatory cells in the BALF were increased. The overexpression of lncRNA n337374 ameliorated these pathological changes and improved impaired lung function and inflammation in an asthmatic mouse model. In DCs co-cultured with RSV-infected human airway epithelial cells, CD86 expression was promoted and ERK was markedly phosphorylated. When lncRNA n337374-overexpressing DCs were used in the co-cultures, the expression of CD86 and phosphorylated ERK was decreased.
Conclusion: The results suggest that lncRNA n337374 overexpression may suppress DC maturation by downregulating the CD86 and ERK pathway, subsequently relieving the symptoms of RSV-induced asthma. LncRNA n337374 may be a promising target in the treatment of RSV infection-induced asthma.