Titanium-nickel based thin films can be used as actuators in micro-electro-mechanical systems (MEMS) in such applications as valves, pumps, grippers and sensors. These films are typically prepared using magnetron sputtering. The resultant films are amorphous if deposited at room temperature and annealing is necessary as actuation occurs in the crystalline state by a martensitic phase transformation. Consequently, understanding the nature of the annealing process is critical for microstructural control and optimization of MEMS actuators. The first part of the study is concerned with describing and correlating the evolution of structural, surfacial and nano-scale mechanical properties of amorphous Ti-Ni-Cu thin films crystallized by rapid thermal annealing (RTA), where the treatment takes place under a protected atmosphere by electromagnetic irradiation with fast heating rate (< 100 o C/sec). Long range order of amorphous Ti-Ni-Cu thin films was achieved in a few seconds (> 60 sec), with the optimum crystallization temperature of 480 o C. The fast crystallization process allows the precise control of microstructure in a lower thermal budget (product of processing temperature and time). With increasing the annealing time (up to 180 sec), roughness increased dramatically, and was far more prominent than in films prepared by conventional thermal annealing (CTA). Although RTA is energy efficient due to the shorter annealing time, the film roughness is less ideal than CTA, which may prove limiting in specific applications. Using X-ray absorption spectroscopy (XAS), it was found that the RTA (180 sec) and CTA (1 hr) films possessed the longest range order. The evolution of the nano-scale mechanical properties of the RTA films during annealing was also studied,