Silicon-Carbide (SiC) detectors are always more extensively employed as diagnostics in laser-generated plasma due to their remarkable properties such as their high band gap, high carrier velocity, high detection efficiency, high radiation resistance and low leakage current at room temperature. SiC detectors, in comparison with Si detectors, have the advantage of being insensitive to visible light, having low reverse current at high temperature and high radiation hardness. A similar energy resolution characterizes the two types of detectors, being 0.8% in Si and 1.0% in SiC, as measured detecting 5.8 MeV alpha particles.Generally, SiC detectors are employed as laser-plasma diagnostics in time-of-flight configuration, permitting the simultaneous detection of photons, electrons and ions based on discrimination of velocity. SiC detectors can be employed in the proportionality regime, because their response is proportional to the radiation energy deposited in the active layer. Using thin absorbers in front of the detectors makes it possible to have further information on the radiation nature, intensity and energy. Surface characterization of SiC before and after prolonged exposure to hot plasma laser generated shows the formation of bulk defects and thin film deposition on the detector surface limiting the device functionality.
K: Detection of defects; Instrumentation and methods for time-of-flight (TOF) spectroscopy; Plasma diagnostics -charged-particle spectroscopy; Solid state detectors 1Corresponding author.