K-fluorescence X-ray emission spectroscopy (XES) is receiving growing interest in all fields of natural sciences to investigate the local spin. The spin sensitivity in Kβ (Kα) XES stems from the exchange interaction between the unpaired 3p (2p) and the 3d electrons, which is greater for Kβ than for Kα. We present a thorough investigation of a large number of iron-bearing compounds. The experimental spectra were analyzed in terms of commonly used quantitative parameters (Kβ 1,3 -first moment, Kα 1full width at half-maximum, and integrated absolute difference −IAD−), and we carefully examined the difference spectra. Multiplet calculations were also performed to elucidate the underlying mechanisms that lead to the chemical sensitivity. Our results confirm a strong influence of covalency on both Kβ and Kα lines. We establish a reliable spin sensitivity of Kβ XES as it is dominated by the exchange interaction, whose variations can be quantified by either Kβ 1,3 -first moment or Kβ-IAD and result in a systematic difference signal line shape. We find an exception in the Kβ XES of Fe 3+ and Fe 2+ in water solution, where a new difference spectrum is identified that cannot be reproduced by scaling the exchange integrals. We explain this by strong differences in orbital mixing between the valence orbitals. This result calls for caution in the interpretation of Kβ XES spectral changes as due to spin variations without a careful analysis of the line shape. For Kα XES, the smaller exchange interaction and the influence of other electron−electron interactions make it difficult to extract a quantity that directly relates to the spin.