The definitive diagnosis of acute lymphoblastic leukemia (ALL), as a highly prevalent cancer, requires invasive, expensive, and time-consuming diagnostic tests. ALL diagnosis using peripheral blood smear (PBS) images plays a vital role in the initial screening of cancer from noncancer cases. The examination of these PBS images by laboratory users is riddled with problems such as diagnostic error because the nonspecific nature of ALL signs and symptoms often leads to misdiagnosis. Herein, a model based on deep convolutional neural networks (CNNs) is proposed to detect ALL from hematogone cases and then determine ALL subtypes. In this paper, we build a publicly available ALL data set, comprised 3562 PBS images from 89 patients suspected of ALL, including 25 healthy individuals with a benign diagnosis (hematogone) and 64 patients with a definitive diagnosis of ALL subtypes. After color thresholding-based segmentation in the HSV color space by designing a two-channel network, 10 well-known CNN architectures (EfficientNet, Mobile-NetV3, VGG-19, Xception, InceptionV3, ResNet50V2, VGG-16, NASNetLarge, InceptionResNetV2, and Dense-Net201) were employed for feature extraction of different data classes. Of these 10 models, DenseNet201 achieved