2015
DOI: 10.1051/0004-6361/201526793
|View full text |Cite
|
Sign up to set email alerts
|

X-ray galaxy clusters abundance and mass temperature scaling

Abstract: The abundance of clusters of galaxies is known to be a potential source of cosmological constraints through their mass function. In the present work, we examine the information that can be obtained from the temperature distribution function of X-ray clusters. For this purpose, the mass-temperature (M − T ) relation and its statistical properties are critical ingredients. Using a combination of cosmic microwave background (CMB) data from Planck and our estimations of X-ray cluster abundances, we use Markov chai… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

4
13
0

Year Published

2016
2016
2022
2022

Publication Types

Select...
6

Relationship

3
3

Authors

Journals

citations
Cited by 10 publications
(17 citation statements)
references
References 86 publications
4
13
0
Order By: Relevance
“…where A T −M is the normalization parameter, ∆ is the density contrast chosen for the definition of a cluster, expressed with respect to the total background matter density 1 of the Universe at redshift z, and M ∆ is the mass of the cluster according to the same definition. We note that the 2/3 exponent is consistent with the existing data (Ilić et al 2015). The dispersion is taken into account in the calibration according to the earlier remark; more details on this procedure can be found in Ilić et al (2015).…”
Section: The Halo Mass Functionsupporting
confidence: 80%
See 3 more Smart Citations
“…where A T −M is the normalization parameter, ∆ is the density contrast chosen for the definition of a cluster, expressed with respect to the total background matter density 1 of the Universe at redshift z, and M ∆ is the mass of the cluster according to the same definition. We note that the 2/3 exponent is consistent with the existing data (Ilić et al 2015). The dispersion is taken into account in the calibration according to the earlier remark; more details on this procedure can be found in Ilić et al (2015).…”
Section: The Halo Mass Functionsupporting
confidence: 80%
“…We note that the 2/3 exponent is consistent with the existing data (Ilić et al 2015). The dispersion is taken into account in the calibration according to the earlier remark; more details on this procedure can be found in Ilić et al (2015). Relation (7) can then be used to determine the integrated temperature function and becomes:…”
Section: The Halo Mass Functionsupporting
confidence: 70%
See 2 more Smart Citations
“…The comparison of Planck and CARMA-8 measurements by Rodriguez-Gonzalvez et al (2017) shows that this tension is not due to any bias in the Planck flux measurements. Moreover, a recent analysis of the local X-ray cluster temperature function finds that the same mass bias value is needed to reconcile the X-ray cluster abundance with the CMB cosmology (Ilic et al 2015).…”
Section: Introductionmentioning
confidence: 99%