Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
One of the methods for identifying growth disorder is by assessing the skeletal bone age. A child with a healthy growth rate will have approximately the same chronological and bone ages. It is important to detect any growth disorder as early as possible, so that mitigation treatment can be administered with less negative consequences. Recently, the most popular approach in assessing the discrepancy between bone and chronological ages is through the subjective protocol of Tanner–Whitehouse that assesses selected regions in the hand X-ray images. This approach relies heavily on the medical personnel experience, which produces a high intra-observer bias. Therefore, an automated bone age prediction system with image registration using hand X-ray images is proposed in order to complement the inexperienced doctors by providing the second opinion. The system relies on an optimized regression network using a novel residual separable convolution model. The regressor network requires an input image to be 299 × 299 pixels, which will be mapped to the predicted bone age through three modules of the Xception network. Moreover, the images will be pre-processed or registered first to a standardized and normalized pose using separable convolutional neural networks. Three steps image registration are performed by segmenting the hand regions, which will be rotated using angle calculated from four keypoints of interest, before positional alignment is applied to ensure the region of interest is located in the middle. The hand segmentation is based on DeepLab V3 plus architecture, while keypoints regressor for angle alignment is based on MobileNet V1 architecture, where both of them use separable convolution as the core operators. To avoid the pitfall of underfitting, synthetic data are generated while using various rotation angles, zooming factors, and shearing images in order to augment the training dataset. The experimental results show that the proposed method returns the lowest mean absolute error and mean squared error of 8.200 months and 121.902 months2, respectively. Hence, an error of less than one year is acceptable in predicting the bone age, which can serve as a good supplement tool for providing the second expert opinion. This work does not consider gender information, which is crucial in making a better prediction, as the male and female bone structures are naturally different.
One of the methods for identifying growth disorder is by assessing the skeletal bone age. A child with a healthy growth rate will have approximately the same chronological and bone ages. It is important to detect any growth disorder as early as possible, so that mitigation treatment can be administered with less negative consequences. Recently, the most popular approach in assessing the discrepancy between bone and chronological ages is through the subjective protocol of Tanner–Whitehouse that assesses selected regions in the hand X-ray images. This approach relies heavily on the medical personnel experience, which produces a high intra-observer bias. Therefore, an automated bone age prediction system with image registration using hand X-ray images is proposed in order to complement the inexperienced doctors by providing the second opinion. The system relies on an optimized regression network using a novel residual separable convolution model. The regressor network requires an input image to be 299 × 299 pixels, which will be mapped to the predicted bone age through three modules of the Xception network. Moreover, the images will be pre-processed or registered first to a standardized and normalized pose using separable convolutional neural networks. Three steps image registration are performed by segmenting the hand regions, which will be rotated using angle calculated from four keypoints of interest, before positional alignment is applied to ensure the region of interest is located in the middle. The hand segmentation is based on DeepLab V3 plus architecture, while keypoints regressor for angle alignment is based on MobileNet V1 architecture, where both of them use separable convolution as the core operators. To avoid the pitfall of underfitting, synthetic data are generated while using various rotation angles, zooming factors, and shearing images in order to augment the training dataset. The experimental results show that the proposed method returns the lowest mean absolute error and mean squared error of 8.200 months and 121.902 months2, respectively. Hence, an error of less than one year is acceptable in predicting the bone age, which can serve as a good supplement tool for providing the second expert opinion. This work does not consider gender information, which is crucial in making a better prediction, as the male and female bone structures are naturally different.
Skeletal bone age assessment using X-ray images is a standard clinical procedure to detect any anomaly in bone growth among kids and babies. The assessed bone age indicates the actual level of growth, whereby a large discrepancy between the assessed and chronological age might point to a growth disorder. Hence, skeletal bone age assessment is used to screen the possibility of growth abnormalities, genetic problems, and endocrine disorders. Usually, the manual screening is assessed through X-ray images of the non-dominant hand using the Greulich–Pyle (GP) or Tanner–Whitehouse (TW) approach. The GP uses a standard hand atlas, which will be the reference point to predict the bone age of a patient, while the TW uses a scoring mechanism to assess the bone age using several regions of interest information. However, both approaches are heavily dependent on individual domain knowledge and expertise, which is prone to high bias in inter and intra-observer results. Hence, an automated bone age assessment system, which is referred to as Attention-Xception Network (AXNet) is proposed to automatically predict the bone age accurately. The proposed AXNet consists of two parts, which are image normalization and bone age regression modules. The image normalization module will transform each X-ray image into a standardized form so that the regressor network can be trained using better input images. This module will first extract the hand region from the background, which is then rotated to an upright position using the angle calculated from the four key-points of interest. Then, the masked and rotated hand image will be aligned such that it will be positioned in the middle of the image. Both of the masked and rotated images will be obtained through existing state-of-the-art deep learning methods. The last module will then predict the bone age through the Attention-Xception network that incorporates multiple layers of spatial-attention mechanism to emphasize the important features for more accurate bone age prediction. From the experimental results, the proposed AXNet achieves the lowest mean absolute error and mean squared error of 7.699 months and 108.869 months2, respectively. Therefore, the proposed AXNet has demonstrated its potential for practical clinical use with an error of less than one year to assist the experts or radiologists in evaluating the bone age objectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.