Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The nature of mass-loss in massive stars is one of the most important and difficult to constrain processes in the evolution of massive stars. The largest observational uncertainties are related to the influence of metallicity and wind structure with optically thick clumps. We aim to constrain the wind parameters of sample of 18 O-type stars in the LMC, through analysis with stellar atmosphere and wind models including the effects of optically thick clumping. This will allow us to determine the most accurate spectroscopic mass-loss and wind structure properties of massive stars at sub-solar metallicity to date. This will allow us to gain insight into the impact of metallicity on massive stellar winds. Combining high signal to noise (S/N) ratio observations in the ultraviolet and optical wavelength ranges gives us access to diagnostics of multiple different ongoing physical processes in the stellar wind. We produce synthetic spectra using the stellar atmosphere modelling code FASTWIND, and reproduce the observed spectra using a genetic algorithm based fitting technique to optimise the input parameters. We empirically constrain 15 physical parameters associated with the stellar and wind properties of O-type stars from the dwarf, giant and supergiant luminosity classes. These include temperature, surface gravity, surface abundances, rotation, macroturbulence and wind parameters. We find, on average, mass-loss rates a factor of 4-5 lower than those from theoretical predictions commonly used in stellar-evolution calculations, but in good agreement with more recent theoretical predictions. In the 'weak-wind' regime we find mass-loss rates orders of magnitude below any theoretical predictions. We find a positive correlation of clumping factors with effective temperature with an average $f_ cl 8$ for the full sample. It is clear that there is a difference in the porosity of the wind in velocity space, and interclump density, above and below a temperature of roughly 38 kK. Above 38 kK an average $46 24 <!PCT!>$ of the wind velocity span is covered by clumps and the interclump density is 10-30<!PCT!> of the mean wind. Below an effective temperature of roughly 38 kK there must be additional light leakage for supergiants. For dwarf stars at low temperatures there is a statistical preference for very low clump velocity spans, however it is unclear if this can be physically motivated as there are no clearly observable wind signatures in UV diagnostics.
The nature of mass-loss in massive stars is one of the most important and difficult to constrain processes in the evolution of massive stars. The largest observational uncertainties are related to the influence of metallicity and wind structure with optically thick clumps. We aim to constrain the wind parameters of sample of 18 O-type stars in the LMC, through analysis with stellar atmosphere and wind models including the effects of optically thick clumping. This will allow us to determine the most accurate spectroscopic mass-loss and wind structure properties of massive stars at sub-solar metallicity to date. This will allow us to gain insight into the impact of metallicity on massive stellar winds. Combining high signal to noise (S/N) ratio observations in the ultraviolet and optical wavelength ranges gives us access to diagnostics of multiple different ongoing physical processes in the stellar wind. We produce synthetic spectra using the stellar atmosphere modelling code FASTWIND, and reproduce the observed spectra using a genetic algorithm based fitting technique to optimise the input parameters. We empirically constrain 15 physical parameters associated with the stellar and wind properties of O-type stars from the dwarf, giant and supergiant luminosity classes. These include temperature, surface gravity, surface abundances, rotation, macroturbulence and wind parameters. We find, on average, mass-loss rates a factor of 4-5 lower than those from theoretical predictions commonly used in stellar-evolution calculations, but in good agreement with more recent theoretical predictions. In the 'weak-wind' regime we find mass-loss rates orders of magnitude below any theoretical predictions. We find a positive correlation of clumping factors with effective temperature with an average $f_ cl 8$ for the full sample. It is clear that there is a difference in the porosity of the wind in velocity space, and interclump density, above and below a temperature of roughly 38 kK. Above 38 kK an average $46 24 <!PCT!>$ of the wind velocity span is covered by clumps and the interclump density is 10-30<!PCT!> of the mean wind. Below an effective temperature of roughly 38 kK there must be additional light leakage for supergiants. For dwarf stars at low temperatures there is a statistical preference for very low clump velocity spans, however it is unclear if this can be physically motivated as there are no clearly observable wind signatures in UV diagnostics.
On the route toward merging neutron stars and stripped-envelope supernovae, binary population synthesis predicts a large number of post-interaction systems with massive stars that have been stripped of their outer layers. However, observations of such stars in the intermediate-mass regime below the Wolf-Rayet masses are rare. Using X-Shooting ULLYSES (XShootU) data, we have discovered three partially stripped star + Be/Oe binaries in the Magellanic Clouds. We analyzed the UV and optical spectra using the Potsdam Wolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. The estimated current masses of the partially stripped stars fall within the intermediate-mass range of $ odot $. These objects are found to be over-luminous for their corresponding stellar masses, which aligns with the luminosities during core He-burning. Their accompanying Be/Oe secondaries are found to have much higher masses than their stripped primaries (mass ratio $ 2$). The surfaces of all three partially stripped stars exhibit clear indications of significant nitrogen enrichment as well as a depletion of carbon and oxygen. Furthermore, one of our sample stars shows signs of substantial helium enrichment. Our study provides the first comprehensive determination of the wind parameters of partially stripped stars in the intermediate-mass range. The wind mass-loss rates of these stars are estimated to be on the order of \,M_ yr odot $, and are potential candidates for stripped-envelope supernovae resulting in the formation of a neutron star. If these systems survive the explosion, they will likely evolve to become Be X-ray binaries and later double neutron stars.
The spectral analysis of hot, massive stars is a fundamental astrophysical method of determining their intrinsic properties and feedback. With their inherent, radiation-driven winds, the quantitative spectroscopy for hot, massive stars requires detailed numerical modeling of the atmosphere and an iterative treatment in order to obtain the best solution within a given framework. We present an overview of different techniques for the quantitative spectroscopy of hot stars employed within the X-Shooting ULLYSES collaboration, ranging from grid-based approaches to tailored spectral fits. By performing a blind test for selected targets, we gain an overview of the similarities and differences between the resulting stellar and wind parameters. Our study is not a systematic benchmark between different codes or methods; our aim is to provide an overview of the parameter spread caused by different approaches. For three different stars from the XShooting ULLYSES sample (SMC O5 star AzV\,377, LMC O7 star circ circ $ 171), we employ different stellar atmosphere codes (CMFGEN Fastwind PoWR) and different strategies to determine their best-fitting model solutions. For our analyses, UV and optical spectroscopy are used to derive the stellar and wind properties with some methods relying purely on optical data for comparison. To determine the overall spectral energy distribution, we further employ additional photometry from the literature. The effective temperatures found for each of the three different sample stars agree within $3\,$kK, while the differences in $ g$ can be up to $0.2\,$dex. Luminosity differences of up to $0.1\,$dex result from different reddening assumptions, which seem to be systematically larger for the methods employing a genetic algorithm. All sample stars are found to be enriched in nitrogen. The terminal wind velocities are surprisingly similar and do not strictly follow the $ eff $ relation. circ $ 50), we find clear indications of an evolved status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.