While shape memory alloys (SMAs) have many actuation benefits, their frequencies are commonly restricted by slow cooling times caused by limitations in convective heat transfer. To increase the cooling speed and at the same time reduce excess power consumption from overheating, it is critical to understand the heat transfer from SMA wires. This requires accurate surface temperature measurement under a fixed input power, which is difficult to obtain using traditional methods because of the nature of SMAs (thin wires, large strains, heat activation, ambient environment, etc). This paper introduces a non-invasive technique for calculating the convective coefficient for SMAs by employing the temperature-induced transformation strain of SMAs to estimate the surface temperature. This method was experimentally validated for measurement of the convective coefficient in air where infrared cameras can operate, and then used to indirectly measure the convective coefficient across a range of commonly utilized SMA wire diameters and ambient media where traditional methods are limited. Formulated empirical correlations to the collected data provide a mathematical relationship to calculate the convective coefficient in material models which serve as better estimates of convection, and may be used for optimization of SMA actuators for increased frequency performance while ensuring that power draw is minimized.