2025
DOI: 10.23880/oaja-1
|View full text |Cite
|
Sign up to set email alerts
|

Untitled

Abstract: Redshift is an important parameter of galaxies, and the use of photometry data for redshift estimation has always been a focus in the field of astronomy. This study explores a redshift estimation method for SDSS photometric data based on the AutoGluon-Mix algorithm, in which the integrated learning methods, including K-nearest neighbors, random forests, XGBoosted trees, LightGBM boosted trees, CatBoost boosted trees, Extremely Randomized Trees, and neural networks, improve the accuracy of redshift estimation t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?