In catalysis, determining the relationship between the dynamic electronic and atomic structure of the catalysts and the catalytic performance under actual reaction conditions is essential to gain a deeper understanding of the reaction mechanism since the structure evolution induced by the absorption of reactants and intermediates affects the reaction activity. Hard x-ray spectroscopy methods are considered powerful and indispensable tools for the accurate identification of local structural changes, for which the development of suitable in situ reaction cells is required. However, the rational design and development of spectroscopic cells is challenging because a balance between real rigorous reaction conditions and a good signal-to-noise ratio must be reached. Here, we summarize the in situ cells currently used in the monitoring of thermocatalysis, photocatalysis, and electrocatalysis processes, focusing especially on the cells utilized in the BL14W1-x-ray absorption fine structure beamline at the Shanghai Synchrotron Radiation Facility, and highlight recent endeavors on the acquisition of improved spectra under real reaction conditions. This review provides a full overview of the design of in situ cells, aiming to guide the further development of portable and promising cells. Finally, perspectives and crucial factors regarding in situ cells under industrial operating conditions are proposed.