Background/Aims: (-)-Hydroxycitric acid (HCA) had been shown to suppress fat accumulation in animals and humans, while the underlying biochemical mechanism is not fully understood, especially little information is available on whether (-)-HCA regulates energy metabolism and consequently affects fat deposition. Methods: Hepatocytes were cultured for 24 h and then exposed to (-)-HCA (0, 1, 10, 50 µM), enzyme protein content was determined by ELISA; lipid metabolism gene mRNA levels were detected by RT-PCR. Results: (-)-HCA significantly decreased the number and total area of lipid droplets. ATP-citrate lyase, fatty acid synthase and sterol regulatory element binding protein-1c mRNA level were significantly decreased after (-)-HCA treatment, whereas peroxisome proliferator-activated receptor α mRNA level was significantly increased. (-)-HCA significantly decreased ATP-citrate lyase activity and acetyl-CoA content in cytosol, but significantly increased glucose consumption and mitochondrial oxygen consumption rate. (-)-HCA promoted the activity/content of glucokinase, phosphofructokinase-1, pyruvate kinase, pyruvate dehydrogenase, citrate synthase, aconitase, succinate dehydrogenase, malate dehydrogenase, NADH dehydrogenase and ATP synthase remarkably. Conclusions: (-)-HCA decreased lipid droplets accumulation by reducing acetyl-CoA supply, which mainly achieved via inhibition of ATP-citrate lyase, and accelerating energy metabolism in chicken hepatocytes. These results proposed a biochemical mechanism of fat reduction by (-)-HCA in broiler chickens in term of energy metabolism.