To establish and evaluate an intestinal microbiota dysbiosis-induced obesity mouse model. 50 C57BL/6 J male healthy mice were randomly divided into an obesity model group and the control group. The body weight, body length, and Lee’s index of the two groups of mice at week 1 and week 10 were compared. Serum glucose (GLU), total cholesterol (TC) and triglyceride (TG) were measured by enzyme-labeled colorimetric methods. Illumina HiSeq 16S rDNA high-throughput sequencing technology was used to characterize intestinal microbiota in feces. The success rate of model establishment in obese mice was 52%. The body weight, body length, Lee’s index, and abdominal fat (wet weight) in the obese model group were all higher than those in the control group, and the differences were statistically significant (P < 0.01). Serum GLU and TC levels in the obesity model group were higher than those in the control group (P < 0.05), and there was no difference in TG levels between the two groups (P > 0.05). The control group contained more abundant intestinal microbiota phyla and genera than did the obesity model group; the differences between the two groups were significant (FDR ≤ 0.05, P ≤ 0.05). Intestinal microbiota dysbiosis can be used to generate an obesity model in mice.