Chronic pain is a debilitating disorder that can occur as painful episodes that alternates with bouts of remission and occurs despite healing of the primary insult. Those episodes are often triggered by stressful events. In the last decades, a similar situation has been evidenced in a wide variety of rodent models (including inflammatory pain, neuropathy and opioid-induced hyperalgesia) where animals develop a chronic latent hyperalgesia that silently persists after behavioral signs of pain resolution. This state, referred as latent pain sensitization, is due to the compensatory activation of antinociceptive systems, such as the opioid system or NPY and its receptors. A transitory phase of hyperalgesia can then be reinstated by pharmacological or genetic blockade of these antinociceptive systems or by submitting animals to acute stress. Those observations reveal that there is a constant endogenous analgesia responsible for chronic pain inhibition that might paradoxically contribute to maintain this maladaptive state and could then participate to the transition from acute to chronic pain. Thus, demonstration of the existence of this phenomenon in humans and a better understanding of the mechanisms by which latent pain sensitization develops and maintains over long periods of time will be of particular interest to help identifying new therapeutic strategies and targets for chronic pain treatment. The present review aims to recapitulate behavioral expression, potential clinical relevance, cellular mechanisms and intracellular signaling pathways involved so far in latent pain sensitization.