Galactofuranosyl residues are present in various microorganisms but not in mammals. In this study, we identified a human lectin binding to galactofuranosyl residues and named this protein human intelectin (hIntL). The mature hIntL was a secretory glycoprotein consisting of 295 amino acids and N-linked oligosaccharides, and its basic structural unit was a 120-kDa homotrimer in which 40-kDa polypeptides were bridged by disulfide bonds. The hIntL gene was split into 8 exons on chromosome 1q21.3, and hIntL mRNA was expressed in the heart, small intestine, colon, and thymus. hIntL showed high levels of homology with mouse intelectin, Xenopus laevis cortical granule lectin/oocyte lectin, lamprey serum lectin, and ascidian galactose-specific lectin. These homologues commonly contained no carbohydrate recognition domain, which is a characteristic of C-type lectins, although some of them have been reported as Ca 2؉ -dependent lectins. Recombinant hIntL revealed affinities to D-pentoses and a D-galactofuranosyl residue in the presence of Ca 2؉ , and recognized the bacterial arabinogalactan of Nocardia containing D-galactofuranosyl residues. These results suggested that hIntL is a new type lectin recognizing galactofuranose, and that hIntL plays a role in the recognition of bacteria-specific components in the host.In host defense, the recognition of bacterial components is important for induction of immune responses. The cell wall components of pathogens have various biological activities and contain the bacteria-specific carbohydrate chains that do not exist in mammals. The recognition of these carbohydrate chains is useful to induce the cellular responses and fluidphase immune reactions for elimination of pathogens.In the innate immune response, the bacterial carbohydrate chains are recognized by the animal lectins that are present on cells as phagocytosis receptors or in plasma as opsonins or agglutinins. As a phagocytosis receptor, the mannose receptor binds materials containing terminal mannosyl residues such as zymosan and enhances their clearance by phagocytes (1, 2).The collectins and the ficolins are soluble lectins, and these lectins function as opsonins or agglutinins for bacteria (3)(4)(5)(6). In addition, the mannose-binding lectin (MBL), 1 a typical collectin, and ficolin/P32 form complexes with MBL-associated serine proteases in plasma. Binding of these complexes to targets activates the complement system, and complement activation induces opsonization of the targets by phagocytes and the target killing by formation of the membrane attack complex (7-9). This lectin-dependent complement activation pathway is named the lectin pathway and plays important roles in innate immunity (10, 11). These biological defense lectins commonly have affinity to mannose or N-acetylglucosamine, and binding is sustained by Ca 2ϩ (1-6), although the opposite results have been reported with regard to the Ca 2ϩ dependence of ficolins (5, 6, 12). On the other hand, animal lectins also include a group of lectins that have affinity to...