Proposed in 1937, the Collatz conjecture has remained in the spotlight for mathematicians and computer scientists alike due to its simple proposal, yet intractable proof. In this paper, we propose several novel theorems, corollaries, and algorithms that explore relationships and properties between the natural numbers, their peak values, and the conjecture. These contributions primarily analyze the number of Collatz iterations it takes for a given integer to reach 1 or a number less than itself, or the relationship between a starting number and its peak value.