Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper introduces the XOR-OR-AND normal form (XNF) for logical formulas. It is a generalization of the well-known Conjunctive Normal Form (CNF) where literals are replaced by XORs of literals. As a first theoretic result, we show that every CNF formula is equisatisfiable to a formula in 2-XNF, i.e., a formula in XNF where each clause involves at most two XORs of literals. Subsequently, we present an algorithm which converts Boolean polynomials efficiently from their Algebraic Normal Form (ANF) to formulas in 2-XNF. Experiments with the cipher ASCON-128 show that cryptographic problems, which by design are based strongly on XOR-operations, can be represented using far fewer variables and clauses in 2-XNF than in CNF. In order to take advantage of this compact representation, new SAT solvers based on input formulas in 2-XNF need to be designed. By taking inspiration from graph-based 2-CNF SAT solving, we devise a new DPLL-based SAT solver for formulas in 2-XNF. Among others, we present advanced pre- and in-processing techniques. Finally, we give timings for random 2-XNF instances and instances related to key recovery attacks on round reduced ASCON-128, where our solver outperforms state-of-the-art alternative solving approaches.
This paper introduces the XOR-OR-AND normal form (XNF) for logical formulas. It is a generalization of the well-known Conjunctive Normal Form (CNF) where literals are replaced by XORs of literals. As a first theoretic result, we show that every CNF formula is equisatisfiable to a formula in 2-XNF, i.e., a formula in XNF where each clause involves at most two XORs of literals. Subsequently, we present an algorithm which converts Boolean polynomials efficiently from their Algebraic Normal Form (ANF) to formulas in 2-XNF. Experiments with the cipher ASCON-128 show that cryptographic problems, which by design are based strongly on XOR-operations, can be represented using far fewer variables and clauses in 2-XNF than in CNF. In order to take advantage of this compact representation, new SAT solvers based on input formulas in 2-XNF need to be designed. By taking inspiration from graph-based 2-CNF SAT solving, we devise a new DPLL-based SAT solver for formulas in 2-XNF. Among others, we present advanced pre- and in-processing techniques. Finally, we give timings for random 2-XNF instances and instances related to key recovery attacks on round reduced ASCON-128, where our solver outperforms state-of-the-art alternative solving approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.