Abstract:In meeting the need for environmental remediation in wastewater treatment and the development of popular sulfate-radical-based advanced oxidation processes (SR-AOPs), a series of Co/Fe-based catalysts with confirmed phase structure were prepared through extended soft chemical solution processes followed by atmosphere-dependent calcination. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and 57 Fe Mössbauer spectroscopy were employed to characterize the composition, morphology, crystal structure and chemical state of the prepared catalysts. It was shown that calcination in air, nitrogen and ammonia atmospheres generated Co-Fe catalysts with cobalt ferrite (CoFe 2 O 4 ), Co-Fe alloy and Co-Fe nitride as dominant phases, respectively. The prepared Co/Fe-based catalysts were demonstrated to be highly efficient in activating peroxymonosulfate (PMS) for organic Orange II degradation. The activation efficiency of the different catalysts was found to increase in the order CoFe 2 O 4 < Co-Fe nitride < Co-Fe alloy. Sulfate radical was found to be the primary active intermediate species contributing to the dye degradation for all the participating catalysts. Furthermore, a possible reaction mechanism was proposed for each of the studied catalysts. This study achieves progress in efficient cobalt-iron catalysts using in the field of SR-AOPs, with potential applications in environment remediation.