Fine wires and cables play a critical role in the design of medical devices and subsequent treatment of a large array of medical diagnoses. Devices such as guide wires, catheters, pacemakers, stents, staples, functional electrical stimulation systems, eyeglass frames and orthodontic braces can be comprised of wires with diameters ranging from 10s to 100s of micrometres. Reliability is paramount as part of either internal or external treatment modalities. While the incidence of verified fractures in many of these devices is quite low, the criticality of these components requires a strong understanding of the factors controlling the fracture and fatigue behaviour. 1,2 Additionally, optimisation of the performance and reliability of these devices necessitates characterisation of the fatigue and fracture properties of its constituent wires. A review of cable architecture and stress states experienced during testing is followed by an overview of the effects of changes in material composition, microstructure, processing and test conditions on fracture and fatigue behaviour of wire and cable systems used in biomedical applications. The review concludes with recommendations for future work.