2023
DOI: 10.1016/j.ins.2022.11.158
|View full text |Cite
|
Sign up to set email alerts
|

XRR: Extreme multi-label text classification with candidate retrieving and deep ranking

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 25 publications
(7 citation statements)
references
References 37 publications
0
6
0
1
Order By: Relevance
“…The extracted features with dimension d = 128 are later combined with the key features and fed to the ML model for classification. The feature extraction layer uses the GELU [69] as a non-linear activation function to improve the model's performance, defined as in Eq. (1).…”
Section: Pre-processing Of Main Features (Key Features)mentioning
confidence: 99%
“…The extracted features with dimension d = 128 are later combined with the key features and fed to the ML model for classification. The feature extraction layer uses the GELU [69] as a non-linear activation function to improve the model's performance, defined as in Eq. (1).…”
Section: Pre-processing Of Main Features (Key Features)mentioning
confidence: 99%
“…In [31], the XMTC task is tackled by a hybrid approach, which leverages two stages. The first one is devoted to the retrieval task and exploits two approaches, a Point Mutual Information method and a Unified Label-Semantic Embedding method, to the end of extracting hundreds of candidate labels from a huge label set.…”
Section: Related Workmentioning
confidence: 99%
“…Poucos trabalhos recentes abordam marginalmente o desafio da desbalanceamento, como o AttentionXML, ao representar um texto dado de forma diferente para cada rótulo, o que é especialmente útil para muitos rótulos tail. XRR [Xiong et al 2023] emprega um framework com baseado em informac ¸ão mútua alinhada (aPMI) para capturar a coocorrência de termos de texto e rótulos, o que pode ser um esforc ¸o em relac ¸ão ao desafio da qualidade. No entanto, o XRR possui alto custo computacional para calcular o aPMI na etapa de inferência.…”
Section: Revisão Da Literaturaunclassified