2023
DOI: 10.53733/286
|View full text |Cite
|
Sign up to set email alerts
|

Yamabe solitons in contact geometry

Rahul Poddar,
S. Balasubramanian,
Ramesh Sharma

Abstract: It is shown that the scalar curvature of a Yamabe soliton as a Sasakian manifold is constant and the soliton vector field is Killing. The same conclusion is shown to hold for a Yamabe soliton as a $K$-contact manifold $M^{2n+1}$ if any one of the following conditions hold: (i) its scalar curvature is constant along the soliton vector field $V$, (ii) $V$ is an eigenvector of the Ricci operator with eigenvalue $2n$, (iii) $V$ is gradient.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?