2023
DOI: 10.2339/politeknik.861536
|View full text |Cite
|
Sign up to set email alerts
|

Yapay Sinir Ağı Tabanlı Model ile X-ray Görüntülerinden Covid-19 Teşhisi

Abstract: Dünyadaki koronavirüs hasta sayısı her geçen gün artmaktadır. Hastalığın ortaya çıkışının üzerinden bir seneden fazla zaman geçmesine rağmen istatistiklere göre henüz hasta sayısındaki zirve görülmemiştir. Hasta sayısındaki artışın zamana yayılması hastane doluluk oranlarının tehlikeli boyutlara ulaşmasını önlemek için önemlidir. Bu nedenle virüsü taşıyan bireylerin hızlıca teşhis edilerek hastalık geçene kadar toplumdan soyutlanmaları gerekmektedir. Bu çalışmada X-ray görüntüsü kullanılarak yapılabilecek hızl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 31 publications
0
2
0
Order By: Relevance
“…In a similar method, radiological imaging methods such CXRs images are preferred to diagnose COVID-19 in the early stages. Many studies have used machine learning and artificial intelligence to diagnose diseases in healthcare [13][14][15]. Pediatric pneumonia X-ray images are retrieved from an index and preprocessed and embedded.…”
Section: Introductionmentioning
confidence: 99%
“…In a similar method, radiological imaging methods such CXRs images are preferred to diagnose COVID-19 in the early stages. Many studies have used machine learning and artificial intelligence to diagnose diseases in healthcare [13][14][15]. Pediatric pneumonia X-ray images are retrieved from an index and preprocessed and embedded.…”
Section: Introductionmentioning
confidence: 99%
“…Nowadays, methods that provide early diagnosis of besides important cancer diseases [16] and infections caused by viruses and bacteria are gaining importance day by day. Ataş et al and Eren et al the diagnostic systems they developed also contributed to new methods used in the detection of viruses [17,18].Investigators are consistently looking forward to developing new biosensing mechanisms to detect bacteria. Regarding that, biosensing technologies are developing day by day as an alternative to conventional methods for the detection of MRSA.…”
Section: Introductionmentioning
confidence: 99%