Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this study, 65 yeast strains were isolated from different environmental samples contaminated with various petroleum hydrocarbons such as activated sludges and soil samples from automobile workshops. The yeast isolates were tested for biosurfactant production using various screening methods such as parafilm M test, oil displacement assay, drop collapse assay, determination of surface tension reduction, and emulsification index. Nineteen of the isolates were found positive for biosurfactant production and their molecular characterizations were carried out by sequencing analysis of the ITS1-5.8S-ITS2 region and D1/D2 domain of 26S rDNA. The results indicated that these strains were from a wide range of yeast genera including Rhodotorula, Candida, Yarrowia, Geotrichum, Galactomyces, and Cystobasidium. The studies to determine the emulsification index revealed that the biosurfactants produced by Yarrowia lipolytica strains (TEMGS33, TEMOS12, and TEMOS14) and Apiotrichum loubieri strain (TEMOS16) were the most potent and capable of forming stable emulsions with emulsion index (E ) up to 68%. In addition, quantitative measurements of the surface tension reduction of the biosurfactants produced by these strains were carried out by Du Noüy ring method. Biosurfactants produced from Yarrowia lipolytica strain TEMGS33 and Apiotrichum loubieri strain TEMOS16 gave the best results reducing the surface tension to 34.7 ± 1.15 and 35.3 ± 0.55 mN m , respectively. Based on these data, biosurfactants from Yarrawia lipolytica strains (TEMGS33, TEMOS12, and TEMOS14) and Apiotrichum loubieri strain (TEMOS16) showed promising results and might be implemented in numerous industrial fields such as bioremediation and food industry.
In this study, 65 yeast strains were isolated from different environmental samples contaminated with various petroleum hydrocarbons such as activated sludges and soil samples from automobile workshops. The yeast isolates were tested for biosurfactant production using various screening methods such as parafilm M test, oil displacement assay, drop collapse assay, determination of surface tension reduction, and emulsification index. Nineteen of the isolates were found positive for biosurfactant production and their molecular characterizations were carried out by sequencing analysis of the ITS1-5.8S-ITS2 region and D1/D2 domain of 26S rDNA. The results indicated that these strains were from a wide range of yeast genera including Rhodotorula, Candida, Yarrowia, Geotrichum, Galactomyces, and Cystobasidium. The studies to determine the emulsification index revealed that the biosurfactants produced by Yarrowia lipolytica strains (TEMGS33, TEMOS12, and TEMOS14) and Apiotrichum loubieri strain (TEMOS16) were the most potent and capable of forming stable emulsions with emulsion index (E ) up to 68%. In addition, quantitative measurements of the surface tension reduction of the biosurfactants produced by these strains were carried out by Du Noüy ring method. Biosurfactants produced from Yarrowia lipolytica strain TEMGS33 and Apiotrichum loubieri strain TEMOS16 gave the best results reducing the surface tension to 34.7 ± 1.15 and 35.3 ± 0.55 mN m , respectively. Based on these data, biosurfactants from Yarrawia lipolytica strains (TEMGS33, TEMOS12, and TEMOS14) and Apiotrichum loubieri strain (TEMOS16) showed promising results and might be implemented in numerous industrial fields such as bioremediation and food industry.
Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-products. We irradiated Y. lipolytica NRRL YB-567 with UV-C to enhance ammonia (for fertilizer) and lipid (for biodiesel) production on low-cost protein and carbohydrate substrates. The resulting strains were screened for ammonia and oil production using color intensity of indicators on plate assays. Seven mutant strains were selected (based on ammonia assay) and further evaluated for growth rate, ammonia and oil production, soluble protein content, and morphology when grown on liver infusion medium (without sugars), and for growth on various substrates. Strains were identified among these mutants that had a faster doubling time, produced higher maximum ammonia levels (enzyme assay) and more oil (Sudan Black assay), and had higher maximum soluble protein levels (Bradford assay) than wild type. When grown on plates with substrates of interest, all mutant strains showed similar results aerobically to wild-type strain. The mutant strain with the highest oil production and the fastest doubling time was evaluated on coffee waste medium. On this medium, the strain produced 0.12 g/L ammonia and 0.20 g/L 2-phenylethanol, a valuable fragrance/flavoring, in addition to acylglycerols (oil) containing predominantly C16 and C18 residues. These mutant strains will be investigated further for potential application in commercial biodiesel production.
Thermostable proteases are important in biotechnological and industrial sectors, due to their stability against denaturing agents and chemicals. The feature that gives them such unique applicability is their reaction at high temperatures, which affords a high concentration of substrate, and less risk of microbial contamination. Nearly 65% of industrial proteases are isolated from marine microbial source, and they can significantly resist a wide range of organic solvents at high temperatures. The most important trait of marine organisms is their adaptability, which allows them to grow optimally in harsh environments such as high salt, temperatures, and pressure-the characteristics of deep-sea hot springs and geothermal sediments. However, proteases are immunogenic, and they can trigger inflammatory conditions in human; so their safety assessment prior to industrial usage is of paramount importance. This review focusses on marine-origin thermophilic proteases, their thermal resistance, scopes of their industrial applications, and risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.